
CharIoT: An end-user programming environment for the IoT
Matúš Tomlein

Aarhus University
Aarhus, Denmark
matus@cs.au.dk

Sudershan Boovaraghavan, Yuvraj Agarwal, Anind K. Dey
Carnegie Mellon University

Pittsburgh, PA, USA
sud335@gmail.com, [yuvraj, anind]@cs.cmu.edu

((a)) A graph-based overview of the instal-
lation showing entities in the installations as
nodes, grouped by their placements and linked
by their relations.

((b)) An end-user programming interface in-
spired by IFTTT with support for describing
higher-level events using virtual sensors.

((c)) Rules from other installations recom-
mended using content-based and collaborative
filtering approaches.

Figure 1: Three main parts of the interface: overview of the installation, building automation rules and exploring shared rules.

ABSTRACT
Despite the breadth of related work, enabling end-users of
varying technical ability to leverage sensor data to control
their Internet of Things (IoT)-enabled installations remains a
challenge. This work proposes a unified interface that provides
three building blocks to support the end-user configuration
of IoT environments: capturing higher-level events in the
installation through virtual sensors, construction of automation
rules with a visual overview of the current configuration and
support for sharing configuration between end-users using a
recommendation mechanism.

ACM Classification Keywords
D.1.7 Software: Programming Techniques: Visual Program-
ming

Author Keywords
End-user programming; visual programming.

INTRODUCTION
Supporting end-users in making use of the context data gener-
ated by the numerous sensors in smart environments and use it
to enable actuation using heterogeneous devices is a task that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoT ’17 October 22–25, 2017, Linz, Austria

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5318-2/17/10.

DOI: https://doi.org/10.1145/3131542.3140261

provides challenges on multiple levels. CharIoT builds on the
GIoTTO software stack [1] and provides a user information for
the configuration of IoT-enabled installations that addresses
three open challenges: supporting end-users in making use
of raw sensor data, providing overview of the current config-
uration within the smart home and supporting users to share
configuration among each other.

VIRTUAL SENSORS
Virtual sensors are components of the GIoTTO stack that can
capture higher-level patterns from raw sensor data. Virtual
sensors can range in complexity from simple analyses such as
averaging sensor data to complex patterns evaluated through
machine learning. For instance, virtual sensors may be used
to capture events and states such as window open or someone
knocking on a door. CharIoT provides two types of virtual
sensors: programmed and demonstrated virtual sensors.

Programmed virtual sensors can provide a more accessible
and understandable abstraction over the raw sensor data. For
instance, a user may program conditions on the temperature in
the room to say that the room is cold if the temperature falls
below 20ºC, warm if it remains between 20 to 24ºC, and hot
if the temperature raises above 24ºC. In addition to making
the data more understandable, such an abstraction enables
describing how the data should be processed for different
settings (e.g., what does “warm” mean in the living room vs.
in the garage).

Demonstrated virtual sensors aim to capture more complex
states and events by letting the end-users demonstrate them.
To demonstrate an event, such as knocking, a user provides

https://doi.org/10.1145/3131542.3140261


demonstrations both for a knocking state and a time period
without knocking. After a few examples (at least three for
each state), the system takes data from all available sensors in
the installations during the demonstrated periods, extracts and
selects relevant features and trains a Random Forest classifier.
Afterwards, windows of new data with length corresponding
to the length of the demonstrations are periodically sampled
and used to predict the current state.

AUTOMATION RULES
Events captured by virtual sensors are useful human-
understandable triggers for automating changes in the installa-
tion. Our interface provides support for building automation
rules that create conditions from the virtual sensors and specify
actions to be performed in the installation when those condi-
tions are met (see Figure 1(b)). The interaction is inspired by
the popular IFTTT service1. In addition, rules may specify
multiple conditions and trigger multiple actions. Actions in
rules can either refer to specific devices (e.g., turn on lights
with certain label) or to locations (e.g., sound alarm on any/all
devices in the kitchen).

Once smart environments are configured, their configura-
tion often becomes hidden or forgotten. In CharIoT, we
wanted to support the visibility of the automation rules using
a graph-based interface (see Figure 1(a)). The graph provides
an overview of the sensors and actuators in the installation
grouped based on their locations (e.g., rooms or locations
within rooms). The automation rules are shown as nodes with
labeled links to the sensors and actions that they use. By click-
ing the nodes in the graph, the user may make changes to the
configuration.

SHARING RULES ACROSS INSTALLATIONS
Although user-driven software ecosystems have emerged for
other platforms, support for sharing and disseminating soft-
ware and configurations in IoT is still rudimentary [2]. This is
also shown by the duplication of rules on the IFTTT service
and the low adoption of sharing [6]. In CharIoT, we aim to
support sharing rules among users by recommending relevant
rules.

Rules are shared between individual installations of CharIoT
that connect to the GIoTTO stack. New rules are recom-
mended based on rules from other CharIoT installations. In
the first step, rules from the available installations are matched
to the targeted installation. This is done using semantic rea-
soning, where the conditions and actions of each rule are
expressed using a semantic query in the Notation3 language
and a semantic reasoner tries to match the conditions and ac-
tions to the devices available in the targeted installation. This
generates a set of rules applicable for the targeted installation.
In the next step, the generated rules are ranked based on two
criteria: similarity of the sensor values that the rules build on
and similarity of the installations. They are presented along
with the recommendation criteria (see Figure 1(c).

1https://ifttt.com/

To evaluate the similarity of sensors, they are compared using
a content-based approach inspired by [5]. Sensor profiles con-
taining fuzzy sets of sensor values are built for both compared
installations. The fuzzy sets represent distributions of values
produced by the sensors within a certain time frame (previous
day in our case). The fuzzy sets of corresponding sensors
are compared using cosine similarity. The similarity gives an
indication of how similar the two sensor environments are.
The similarities are combined and used to rank the rules.

To recommend rules based on the similarity of installations,
an item-to-item collaborative filtering approach is used [3].
New rules are recommended based on other rules that the
user configured, similarly to product recommendations on
Amazon. Thus, if a user configures a rule similar to a rule
configured by another user, additional rules from the other
user are recommended.

Since automation rules are based on virtual sensors, when a
user decides to install a recommended rule, the underlying vir-
tual sensor needs to be transferred as well. This is simple for
programmed virtual sensors. However, for demonstrated vir-
tual sensors, the trained demonstrations need to be transferred
as well. Since the demonstrations from the source installation
may not always fit the targeted installation, in our ongoing
work we are investigating how to decide when a transfer is
possible and how to choose the best representation for transfer
using transfer learning.

CONCLUSION
CharIoT is an end-user programming environment that enables
capturing higher-level events using virtual sensors, provides a
graph-based overview of configurations and recommends rules
across IoT installations. It was tested using IoT sensors (e.g.,
TI SensorTag, Mites) and actuators (e.g., Philips Hue, WeMo
Switch). CharIoT is implemented using Web technologies
(NodeJS, ReactJS) and available on Github [4].

REFERENCES
1. Y. Agarwal and A. K. Dey. 2016. Toward Building a Safe,

Secure, and Easy-to-Use Internet of Things Infrastructure.
Computer 49, 4 (Apr 2016), 88–91.

2. G. Kortuem and F. Kawsar. 2010. Market-based user
innovation in the Internet of Things. In 2010 Internet of
Things (IOT). 1–8.

3. G. Linden, B. Smith, and J. York. 2003. Amazon.com
recommendations: item-to-item collaborative filtering.
IEEE Internet Computing 7, 1 (Jan 2003), 76–80. DOI:
http://dx.doi.org/10.1109/MIC.2003.1167344

4. Matúš Tomlein. 2017. CharIoT source code.
https://github.com/matus-tomlein/CharIoT/. (Sep 2017).

5. C. Truong and K. Römer. 2013. Content-based sensor
search for the Web of Things. In 2013 IEEE Global
Communications Conference (GLOBECOM). 2654–2660.

6. B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman.
2014. Practical Trigger-action Programming in the Smart
Home. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 803–812.

https://ifttt.com/
http://dx.doi.org/10.1109/MIC.2003.1167344
https://github.com/matus-tomlein/CharIoT/

	Introduction
	Virtual sensors
	Automation rules
	Sharing rules across installations
	Conclusion
	References 

