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Activity recognition is inherent to the vision of Internet-of-�ings-enabled smart environments and enables end-users to
perform activities of interest and have their smart environments respond appropriately. However as smart environments
evolve and are expanded over time, the e�ort that end-users and others put into training their activity recognition models
may be wasted, as those models degrade with these evolutions. �is paper works on the problem of transferring activity
recognition knowledge in the face of di�erent maintenance or expansion operations, such as replacing a sensor or expanding
activity recognition to a new room. We work with a novel sensing modality within smart homes, multi-sensor packages,
which provide an integrated package that can sense a wide range of activities. Using a data collection from three spaces
and 16 activities, we show that the maintenance and expansion operations have a varying e�ect on the performance of
trained activity recognition models and identify a set of factors that in�uence it. Due to the large variance in performance
of transferred models, we focus our contribution on preventing the transfer of models that would perform suboptimally in
the changed se�ing. We propose an algorithm recommendation pipeline that makes use of meta-knowledge from previous
maintenance operations to evaluate the transferability of di�erent model representations through several steps. By adapting
to di�erent maintenance and expansion operations, the pipeline can save up to 53% of the e�ort to retrain activity recognition
and �lter out 94% of transfers with suboptimal performance. �e adaptive choice of model representations improves upon
using the same model representation by 0.14 F1 score on average. We discuss tradeo�s made in relation to coverage of use
cases and workload of the person performing the maintenance and expansion operations.
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1 INTRODUCTION
�ere have been tremendous advances over the past decade in sensing within indoor environments, such as
homes and buildings, to turn them into “smarter” structures. �e motivation around these e�orts have ranged
from improving comfort and productivity in the smart o�ce space [4], to reducing building energy usage [1],
to enabling new experiences in a home [9, 15]. �e recent interest in voice as an interface, enabled by devices
such as the Amazon Echo and Google Home, have only served to accelerate this growth with a number of novel
Internet-of-�ings (IoT) sensors, devices, and appliances being developed and brought to market.

To continue to support this vision of smart or IoT-enabled environments, a key requirement is to be able to
detect human activity accurately, for example, what devices an occupant is using or what they are doing in the
space (e.g., watching TV, washing dishes, etc.). Typically, prior work in activity recognition has proposed using
sensors on the occupant’s device, such as a smartphone [3, 29] or a smartwatch [5, 44], or distributing several
simple and single-channel sensors throughout the infrastructure [1, 30, 36], and more recently by combining
multiple sensing modalities [39]. However, recent work by Laput et al. [25] shows that a single “Mites” sensor,
can potentially sense a wide variety of indoor activities, showing high accuracy in detecting a number of common
activities around a home. �is concept of integrating multiple sensors into a single easy-to-deploy package is
catching on with various commercial options also becoming available [8, 22, 31]. �e strong appeal of such
an integrated sensor package is the ease of maintenance and use over time (number of devices to manage and
ba�eries to change, ease of fusing/analyzing data, etc.). In our work, we will explore the use of integrated
multi-sensor packages for supporting activity recognition, particularly for maintenance and expansion activities.

However, despite the rich work conducted by the research community on pervasive sensing and activity
recognition, one critical aspect that has not been studied is how practical these smart sensor deployments are over
time, i.e., when these sensors are deployed for months or even years, with changing environmental conditions.
Prior work has not looked at how the accuracy of activity detection changes, as sensors get moved, replaced or
even upgraded with new versions. Common maintenance scenarios include replacing a sensor with the same
type or a new type of sensor, moving a sensor to a di�erent location in the same space, or some combination
thereof. In contrast, expansion scenarios include adding sensors to new locations to detect the same activities.

In this work, we show that consistent with prior work, detecting a set of activities that a system has been
speci�cally trained on, without making any changes to sensor placement or expanding a deployment, indeed
works reasonably well with standard machine learning algorithms and approaches. However, when these trained
models are re-used during seemingly common maintenance and expansion tasks, like those mentioned above,
the performance and accuracy of activity detection drops signi�cantly. Note that in this work, while we do
build and test a variety of models, our goal is not to evaluate the accuracy of activity recognition across sensor
platforms or moved sensors, but instead to understand the impact of these maintenance and expansion tasks on
activity recognition. In particular, we observe large variance in the accuracy for detecting activities from the
original se�ing that they were trained on, to di�erent se�ings (new spaces, or di�erent sensors), depending on
factors such as the underlying characteristics of the activity, the proximity of the sensor and the activity, the
sensor characteristics, and the machine learning models employed. One approach to addressing the problem of
reduced accuracy is to simply train a new set of models for the maintenance or expansion task being considered.
However, retraining models for anything beyond a handful of activities could be quite time consuming and
human e�ort-intensive, as new labeled training data needs to be collected for each and every activity.

To address this challenge, we develop a novel approach for performing transfer learning for activity recognition
in IoT deployments, which takes into account the practical maintenance and expansion tasks that will occur in
longer term deployments. We �rst highlight the various factors that a�ect the accuracy of transferring machine
learning models to new se�ings due to maintenance and expansion, including the type of activity, sensor type, and
placement of sensors. Next, we propose a new meta-learning approach that allows us to predict the performance
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of trained models when applied to these new se�ings, based on a set of meta-features that include the classi�er and
feature set used in a model, characteristics of the maintenance operation being performed, and the performance
of the model in the non-transfer case. �is prediction allows us to determine which activity recognition models
are likely to transfer well and which are not, and determine which model representations (choice of classi�er and
feature set) are likely to perform well. We describe this meta-learning approach in detail and demonstrate that
this approach works well in practice through a series of in-depth analyses.

We further show the trade o� between our approach and having to retrain a new set of activity recognizers for
the target domain (i.e., new maintenance or expansion se�ing). In particular, retraining classi�ers requires a full
set of labeled data for each activity being transferred to the target domain, but has improved coverage over the
activities being transferred. In contrast, our approach only requires labeled data for a minimal set of activities
being transferred, but does not achieve full coverage.

In summary, we make the following contributions in this work.

• We present a set of four routine maintenance and expansion tasks in an IoT environment, showing that
these tasks make activity recognition challenging and we highlight the factors that lead to signi�cant
decreases in overall performance as a result of these tasks. �e four tasks we consider are:
– Replacing a faulty sensor with a replica,
– Moving a sensor from one location to another within the same room,
– Replacing a faulty sensor or upgrading a sensor to a di�erent sensor type, and
– Expanding an IoT environment by placing a sensor in a previously un-instrumented room to detect

activities in that room.

• We propose a meta-learning based approach that can mitigate this decrease in activity recognition model
performance when transferred to target domains, such as when these routine maintenance or expansion
operations are performed. It does so by automatically building machine learning models for activity
recognition and predicting which of these models are likely to transfer from a source domain on which
they were trained, to a target domain. In doing so, it prevents the negative transfer of poorly performing
models to the target domain, increasing overall performance in the target domain.

• We evaluate our approach on multiple real world scenarios, utilizing multiple sensor packages, and
deployments in di�erent environments. We demonstrate that our approach saves signi�cant training e�ort
compared to retraining activity recognizers for maintenance and expansion operations. By adaptively
choosing the algorithms and feature sets, our meta-learning approach improves the performance of
transferred models over using the same model representations.

2 RELATED WORK
We have grouped the related work that has inspired our research into two categories. First, we describe the
prior work in the area of transfer learning and meta-learning, positioning and contrasting our work with them.
Next, we discuss the research in the general area of activity recognition in ubiquituous computing environments,
comparing and contrasting our work.

2.1 Transfer Learning
In general, transfer learning aims to reduce the e�ort to collect new training data for a new machine learning
problem, by reusing knowledge from other problems [35]. Our problem of supporting the maintenance of activity
recognition models relates to transfer learning since we see the modi�ed or expanded instrumented environments
as a new problem and we aim to reuse knowledge from training data from a previous installation.
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Transfer learning deals with di�erent changes in the source and target domains. �e domains might have a
di�erent feature space, marginal probability distribution over the features or di�erent tasks. In our problem of
maintaining and expanding IoT installations to support activity recognition, the di�erent domains have the same
feature spaces. In the case of transfer across sensors of the same type, the same sensor channels are present. In
the case of transfer across sensor boards, the intersection of the sensor channels can be used to train models, thus
the feature space does not change. On the other hand, the marginal probability distribution over the features
may be di�erent due to changes in the sensors, placements or rooms. With respect to tasks, both of our domains
use the same tasks – the activities that we want to recognize in both domains – which implies a homogeneous
transfer learning se�ing [35].

Relevant transfer learning approaches within this se�ing to correct for shi�s in marginal probability distribu-
tions can be grouped into the following three categories:

(1) Instance-based transfer learning, where training instances from one or more source domains are trans-
ferred by reweighing them according to di�erences in the target domain [10].

(2) Asymmetrical feature-based transfer learning, that transforms the feature space of source domains using
weights assigned based on data from the target domain [14].

(3) Symmetrical feature-based transfer learning, where a common latent feature space between the two
domains is discovered that reduces di�erences in the marginal distributions between domains [34].

Our proposed approach is related to symmetrical feature-based transfer learning since we aim to reduce the
feature spaces of models by predicting sensor channels that provide domain-invariant features. However, our
analysis (Section 5) has shown that the maintenance and expansion operations result in a wide variance in the
performance of transferred models due to large di�erences in the source and target domains. We argue that
the variations in performance of the transferred models make it di�cult to deterministically identify a single
solution for improving the transfer for all activities, sensor boards and changes in placements and spaces that
would always result in acceptable performance. �is has led us to consider another problem in transfer learning,
which is negative transfer.

2.1.1 Negative Transfer. When the source and target domains are not well related, any transferred models
will have a lower performance in the target domain. When information from the source domain is not only
unhelpful, but also counter-productive, in the target domain, this is referred to as negative transfer. Negative
transfer within transfer learning has not been widely researched [45]. Existing work on negative transfer tends
to work with measures of transferability that are derived based on data from the source and target domains
and is used to evaluate the potential to transfer models from the source to the target domain. We discuss three
proposed approaches in more detail.

Eaton et al. [17] proposed to train logistic regression models for source and target domains. �e performance of
the trained models across domains was then compared and used to construct a graph with transferability measures.
�e graph was used to derive a transfer function to determine the parameters that may be transferred from the
source domains to the target. Seah et al. [41] proposed a framework that aligns the conditional distributions of
source and target domains. It pseudo-labels unlabeled target data based on a limited amount of labeled data from
the target domain. Source data that does not align with the pseudo-labeled target data is removed. Ge et al. [21]
present an approach that assigns weights to source domains based on how related they are to the target domain.
It clusters source and target data and propagates labels from limited labeled target data across the clusters. �e
sources are weighted and evaluated by comparing the source and target clusters.

However, as pointed out by Weiss et al. [45], it is inherently di�cult to de�ne robust measurements for negative
transfer that can relate the source and target domains. �e three proposed approaches just presented all make use
of limited labeled data from the target domain, as will our proposed approach. Since our contribution is focused on
supporting maintenance and expansion operations, we propose to make use of information about these performed
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operations to assess the transferability of models. As we explain next, instead of assessing transferability based
on limited labeled data from the target domain, we use meta-learning to predict the transferability of models
based on properties of maintenance operations.

2.1.2 Using Meta-learning to Support Transfer Learning. Meta-learning enables machine learning systems
to adapt with experience [27]. �e experience is usually extracted from previous learning episodes. In this
work, we are interested in one speci�c case of meta-learning, called algorithm recommendation. �e goal of
algorithm recommendation is to predict an algorithm suitable for a speci�c problem under study [27]. Algorithm
recommendation has been applied for selecting or weighting algorithms across various datasets, however the
recommended models have largely been applied in non-transfer se�ings [27].

Recently, Félix et al. [18] proposed that meta-learning and transfer learning can support each other. �ey
proposed a method that uses meta-learning for source selection (�nding the best source problem for addressing
the new target problem) and transfer learning for adapting the selected source model to the transfer domain.
However, the method has not been fully implemented and evaluated in their current work.

Researchers have applied meta-learning to learn model transformations on source tasks that can be transferred
to target tasks [2]. �ey have also applied meta-learning to learn and transfer a parameter function for text
classi�cation [16]. Furthermore, meta-features, used in algorithm recommendation, have been applied for
computation of similarity between datasets in transfer learning [7].

In this work, we propose a new meta-learning approach that uses meta-knowledge from previous transfers in
sensor maintenance and expansion operations to assess and recommend transferable models. In contrast with
past work on algorithm recommendation, our approach learns from meta-knowledge acquired during evaluations
of models transferred across domains.

2.1.3 Summary. In summary, the problem we are focusing on is a transfer learning problem, where the source
and target domains di�er in their marginal probability distributions over features caused by changes due to
maintenance operations. �is paper proposes an approach that can be classi�ed as homogeneous feature-based
transfer learning with symmetric feature transformation. Our approach aims to reduce the di�erences in marginal
probability distributions over features by selecting a common latent feature space. However, compared to
feature-based transfer learning approaches, it also applies meta-learning, providing an ability to select from
a set of algorithms and an ability to terminate to prevent negative transfer, which we found important in our
experiments.

While many transfer learning approaches aim to correct di�erences in marginal distributions using labeled or
unlabeled data from the target domain, our approach also uses previous experience from related maintenance
operations in a meta-learning se�ing. Using previous experience from maintenance operations gives us an ability
to predict the performance of transfer based on features of maintenance operations instead of using data from
target domain. Predicting the performance of transfer is a novel way to address negative transfer. It provides
an alternative to existing approaches for negative transfer that aim to assign a transferability weight based on
labeled target data, which is o�en insu�cient to get a true class distribution [45]. Our approach does make
use of minimal amounts of labeled data from the target domain, but it is used as a secondary step to support
meta-learning.

2.2 Maintenance and Transfer of Sensor-based Activity Recognition Models
We now discuss related work in the maintenance of sensor-based activity recognition systems within smart
homes and activity recognition in general. We also discuss existing work on the expansion of activity recognition
systems through transfer learning.
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2.2.1 Maintenance and Expansion of Activity Recognition in Smart Homes. Much of the work in supporting
maintenance of activity recognition within smart homes has focused on detecting sensor failures. For example,
researchers have enabled detection of non-fail-stop failures such as dislodged or blocked sensors [33, 46],
assessments of whether maintenance visits are necessary [23] and adaptation of an activity recognition system
assuming redundant sensors are available, in the face of sensor failures [24]. However, such maintenance
operations di�er from the operations we have identi�ed. We do not assume redundant sensors in installations and
work with the case of adapting activity recognition models a�er a faulty general-purpose sensor was replaced or
upgraded.

Much of the related work on expansion of activity recognition in smart environments has focused on expanding
activity recognition to new smart homes. While approaches for transfer learning have been used to support this,
the methods applied are less applicable to our domain as we now explain.

�e related work has used multiple single-purpose sensors, e.g., motion, light, item presence or contact sensors
that observe single types of events. Due to this focus, each activity recognition model was trained using multiple
sensors dispersed throughout smart environments. Transferring such models across smart environments meant
that the feature spaces of the models for the source and target environments had to be mapped out [12, 19, 37, 42,
43]. We avoid this particular problem since we assume the use of multi-purpose sensors that provide similar and
known features in the source and target environments. Instead of training models on the events from multiple
sensors in a smart environment, our activity recognition models are trained on sensor channels coming from the
same sensor device, which means that we do not need to map features to multiple locations in the house. Instead,
our work focuses particularly on the changes to the marginal probability distributions of domains with the same
feature space.

Furthermore, our use of general purpose sensors is not compatible with the work by Rashidi et al [37] that
aims to map activities across smart homes based on their properties (e.g., durations, locations). �e feature space
for activity recognition are not necessarily represented by discrete and dispersed events but continuous sensor
signal values from a single location. �e approach taken by Kasteren et al. [43] transferred model parameters for
transitions (temporal events) between activities and did not take into account the transfer of labeled data, while
our approach does not capture the temporal relations between events but focuses on the reuse of labeled data. It
is le� to future work to see whether these two approaches can be combined.

2.2.2 Adapting for Changes in Wearable Activity Recognition. �e wearable computing community has also
dealt with adapting for change in activity recognition, primarily due to changes in the location of wearables due
to slippage or replacement of sensors. Methods for self-healing recognition models that account for shi�s in
feature distributions have been proposed.

Some of the related work has proposed to self-calibrate models using data from the target domain (moved
sensor or replaced sensor). Forster et al. [20] proposed online self-calibration by adjusting the decision boundaries
of nearest class center classi�ers. Chavarriaga et al. [11] proposed to adapt classi�ers for shi�s in feature
distributions using online learning and expectation-maximization. Lester et al. [28] used a larger training set of
multiple di�erent sensor locations to enable testing on any of those locations. Morales et al. [32] used feature
representation transfer learning by retraining deep learning models to account for transfer of wearable activity
recognition models between users, modalities and sensor locations.

We argue that the displacement of wearable sensors provides a di�erent case from the displacement of general-
purpose sensors within the smart home. Such wearable sensors provide a smaller range of sensor channels
(mostly inertial sensors) and capture di�erent types of activities. For instance, due to the use of sensor channels
that capture di�erent facets of the environment and provide di�erent transferability across longer distances,
displacement of general-purpose sensors in smart homes has a varying e�ect on di�erent types of features of
transferred models and this needs to be supported using a di�erent mechanism.
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2.2.3 Summary. Multi-sensor packages are becoming increasingly available and popular due to lower costs
and ease of installation. However, they provide a novel modality that has not been studied in transfer learning
for activity recognition. We argue that our use of multi-sensor packages is particularly challenging due to the
wider range of sensor channels and modalities they provide as well as the di�erent activities they support. �ey
require a di�erent choice of transfer learning methods than binary sensors dispersed around smart homes, and
maintenance operations in smart homes have di�erent e�ects on activity recognition than shi�s of wearable
sensors on the human body. As such, we also see a contribution in the analysis of the e�ect of maintenance
and expansion operations on the transfer of activity recognition models. We now describe the experiments we
conducted to explore transfer learning for these operations.

3 EXPERIMENTAL SETUP AND DATA COLLECTION
To address the gap in support for easier performance of maintenance and expansion tasks, we conducted a large
data collection study. We collected labeled samples of activities that enable comparison of the source and target
domain across di�erent types of sensors, activities, di�erent placements of sensors and layouts of spaces.

In this work, we build on the work by Laput et al. [25], who evaluated the usefulness of passive multi-sensor
packages for activity recognition in smart homes. For our experimentation, we selected three such sensor
packages out of �ve tested initially based on their reliability, usefulness and performance:

(1) Mites. �is sensor board [25] (see Figure 1(a)) features nine discrete sensors with the ability to capture
twelve unique sensor dimensions. Di�erent sensors onboard are sampled at di�erent sampling rates,
speci�cally, temperature, humidity, pressure, light intensity, magnetometer, Wi� RSSI, GridEye and PIR
motion sensors are sampled at 10Hz. All three axes of a 3-D accelerometer are sampled at 4 kHz, a
microphone at 17 kHz, and an EMI sensor at 500 kHz. �e sensor, instead of transmi�ing raw data,
provides an additional ability to featurize all the data on the sensor. For the low frequency sensors
which are sampled at 10Hz, the Mites compute seven statistical features: min, max, range, average, sum,
standard deviation, and centroid on a rolling one second bu�er. For the high frequency sensors, like
the EMI, Accelerometer and the Microphone, every 100ms the Mites compute a real FFT (Fast Fourier
Transform) on a rolling 256-point bu�er for each sensor, along with the same statistical features as the
other sensors. �us, for the low frequency sensors the Mites transmits (over WiFi) 7 statistical features
and for the high frequency sensors the Mites transmit 135 features (128 FFT bins + 7 statistical features).

(2) Matrix.one Creator. �e Matrix one creator [31] (see Figure 1(c)) is a Raspberry Pi Hat/Shield. �is
sensor board incorporates di�erent sensors like an accelerometer, gyroscope, magnetometer, humidity,
temperature, pressure and 8-channel microphone array. �is also provides the raw stream of data for all
the sensors except for the microphone. �e microphone sensor is sampled at 16kHz and we featurize the
raw stream data on the Raspberry Pi with similar statistical information as the Mites at a frequency of
10Hz to be consistent.

(3) Bosch XDK. �e Bosch XDK [8] (see Figure 1(b)) is a WiFi- and Bluetooth-enabled sensor board that
provides eight di�erent sensors: accelerometer, gyroscope, magnetometer, microphone, humidity, temper-
ature, pressure and light. Since the sensor �rmware does not support onboard featurization, we transmit
the raw stream sensor data to the backend at a rate of 10 Hz and calculate statistical features.

3.1 Physical Se�ings
To constrain the kinds of instrumented physical spaces we were considering in this initial work that still supported
a wide variety of activities, we chose to work with kitchens on our campus (located across multiple buildings).
We choose 3 similar kitchens on campus as shown in Figure 2. �e red circles in each �oor plan represents the
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(a) Mites (b) Bosch XDK (c) Matrix.one Creator

Fig. 1. Di�erent ubiquitous sensor boards used in our data collection experiment.

3 di�erent placements of the sensors in each kitchen (labeled as A, B, C). �e blue/green circles represent the
locations of the 16 di�erent activities we collected data on in each kitchen for each sensor placement.

3.2 Activity Se�ings
As part of our data collection, we identi�ed a wide variety of common activities that we performed in our 3
kitchens. We separated the activities into “Long” and “Short” activities. Long activities are carried out over a
period of 6 minutes (e.g., microwave running etc) and Short activities are demonstrated 30 times (e.g., Knocking
on a door). To allow for more variability in the data collection and to reduce the likelihood of over��ing models
to our data, we conducted these activities at two di�erent times of the day (long-duration activities for 3 minutes
each, and short-duration activities for 15 instances each). We performed these activities and collected sensor data
when the kitchens were not being used by others.

�e collected activities are listed below. �eir numbers correspond to the blue circles in the �oor plans (see
Figure 2), indicating the location where each activity was performed in each of the three kitchens.

• Long activities. From each activity, 6 minute demonstrations were recorded in two separate 3-minute
blocks.
(0) Null/No Event: No activity is performed during this period.
(1) Washing Dishes: Wash plates and cups in the kitchen sink for 3 minutes
(2) Microwave: Set the Microwave power level to 50% or level 5 and run for 3 minutes.
(3) Co�ee: Brew co�ee on the Keurig co�ee machine available in each kitchen. �e co�ee machine

takes 30–45 secs to brew a co�ee, so we brewed 4–6 co�ees over each 3 minute period.
(4) Ke�le: Fill a ke�le with water and bring it to a boil for 3 minutes.
(5) Vacuum cleaning: Run a �oor vacuum for 3 minutes.
(6) Blender running: Run a blender continuously for 3 minutes.
(7) Alarm: Play an alarm sound on a laptop for 3 minutes.
(8) Chopping food: Chopping vegetables with a knife on a cu�ing board for 3 minutes.
(9) Conversation: Have two people hold a conversation for 3 minutes.

• Short activities. We recorded each of our short activities a total of 30 times, broken in two blocks of 15
instances each. Unlike the long activities, the short activities each have durations of a few seconds.
(10) Microwave door opened.
(11) Microwave door closed.
(12) Microwave bu�on press.
(13) Cupboard door opened.
(14) Cupboard door closed.
(15) Knocking on a door.
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(a) Synergy Kitchen (b) Sco�-Hall Kitchen

(c) Robotics Kitchen

Fig. 2. Floor plan of 3 di�erent Kitchen spaces on our campus: Synergy, Sco�-Hall and Robotics. The red circles represent the
3 placements of the deployed sensors in each of these spaces, and the blue/green circles represent the 16 di�erent activities
we used in our experiments.

(16) Soap dispensed.

3.3 Data Collection Iterations
Our data collection consisted of several iterations performed in three kitchens. Each iteration of the data collection
took about 5 hours to perform, including the setup and demonstration of the long and short activities. To collect
data a�er changes in placement of sensors and their replacement with replicas, we performed 2 di�erent iterations
in the Synergy kitchen. In each of the iterations we rotated the placement of sensors in each location clockwise.
So for example: We collected data from all 3 sensors (Mite, Matrix, XDK) placed at “A” in the Synergy kitchen
(see Figure 2(a)) in the �rst iteration, then moved the sensors to “B” for the second iteration, and then to “C” for
the �nal iteration. �is process provides us with diverse data which allows us to analyze di�erent maintenance
and expansion scenarios. �e total data collection performance time was approximately 40 hours.
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All the data from the sensor boards were sent to our backend server over MQTT, a message queuing protocol,
where the data was stored in CSV �les. We used this stored data for our activity recognition modeling and
transfer learning experiments.

4 MODELS FOR ACTIVITY RECOGNITION
�is section introduces the machine learning pipeline we use for training and testing the various activity
recognition models discussed in the paper. Here, we �rst evaluate the performance of models trained using the
pipeline without considering any maintenance or expansion operations (i.e., no transfer learning). We then outline
the experiments we conducted to investigate the performance of the ML models upon transfer between di�erent
sensors and between di�erent locations.

4.1 Pipeline for Training and Testing the Models
Our machine learning pipeline takes as input raw multi-channel data from a single sensor board. We used a
common sampling rate of 10 Hz for all the sensor boards we evaluated. �ese sensor reports, generated every
100ms, are then aggregated into windows of length 1 second, i.e., 10 reports in each window. �e length of 1s
was chosen in order to provide a common representation that �ts both short events (e.g., opening/closing a door)
and gives enough information to represent longer running activities (e.g., microwave in operation). A common
window length was sought in order to enable a responsive system that is able to identify activities within a given
window of time and to extract features that build on windows with constant length (e.g., number of peaks in
signal). We argue that although a more optimized choice of windowing could be possible, it is not the focus in
this paper and the current choice enables good performance both for short and long activities (as we show later
in this section). For short activities, only one repetition was included per window and aligned manually with the
start of the window.

We calculated a set of features from each window, using an existing Python package, tsfresh1. �e package
calculates a large number of time series features, such as mean or kurtosis. �e features were calculated based
on sensor streams provided by the sensor boards. For each sensor stream, 216 features were extracted using
tsfresh. Additionally, through on-board featurization, the Mite sensor provided signals in the frequency domain
using Fast Fourier Transforms (FFT). Due to the large number of such signals (128 for microphone and 384 for
accelerometer), we extracted only 8 features using tsfresh for each FFT value. We experimented with models
built using features extracted from di�erent subsets of sensor channels provided by the sensors. In this paper, we
discuss models built using the following combinations of sensor channels:

(1) all of the below,
(2) accelerometer (X, Y, Z) and magnetometer (X, Y, Z),
(3) accelerometer (X, Y, Z) and microphone,
(4) microphone,
(5) environmental sensors (pressure, temperature, humidity),
(6) EMI and motion sensor.

As described in Section 3, there are di�erences in the sensor streams and on-board featurization capabilities
that the sensors provide. �erefore, models were trained with di�erent feature spaces according to the sensors
used. When testing without transfer, or transferring models to di�erent sensors of the same make, the feature
spaces did not have to change and all available sensor streams for the given sensors were used. However, in order
to enable transfer across sensor boards, the intersection of features that could be extracted from the source and
target sensor boards was used by the models. �erefore, transfer of models from Mites to XDKs didn’t make use
of any FFT features or channels like EMI provided by Mites since they were not available from XDKs. Since the
1h�p://tsfresh.readthedocs.io
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intersections of features between sensor boards were known and models were retrained to use the intersection
before being transferred across sensor boards, the feature space did not have to be changed during transfer.

Each sensor stream is scaled independently using a standard scalar. �us, means and variances of the features
are calculated for each sensor and placement and used to normalize the data. Our tests showed that scaling data
from each sensor placement independently enables the activity recognition models to transfer be�er across the
datasets than when using common scaling parameters.

A�er normalizing the data, the pipeline imputes any missing values and uses the data to train or test classi-
�ers. We considered training both binary classi�ers for each of the 16 activities (e.g., microwave running and
microwave not running) and a single multi-class classi�er across all activities (e.g., 17 classes for the 16 activities
and 1 no activity). Our analysis showed large di�erences in how activities perform a�er transfer and a need
to transfer models for individual activities separately. �erefore, in this paper, we work with binary classi�ers
that each recognize individual activities. �e following learning algorithms are considered in this paper: SVM
(support vector machine) with linear kernel, Random Forest with 10 estimators, and Logistic Regression. All three
are commonly used to perform activity recognition, but have di�ering assumptions that may impact their ability
to support transfer learning in our se�ing. Since SVM has performed the best across our transfer and non-transfer
tests, we will use it when discussing only one algorithm.

Finally, we argue that the described pipeline builds on standard components used for activity recognition
in smart environments. Despite being a new library for feature extraction, tsfresh has already been applied
for activity recognition from timeseries data [6] and evaluated against alternatives for classi�cation using
timeseries data from sensors [13]. We make use of algorithms that have commonly been used for activity
recognition [26]. �e used sensing modality (i.e., multi-sensor package) has been shown to be successful for
the targeted activities [25]. In the following subsection, we demonstrate the performance of models using this
pipeline, without transfer in our data collection.

4.2 Performance of the Models
�is next section analyses the performance of the trained activity recognition models. Figure 3 shows the results
from models trained to detect the activities described earlier. Once again, these models involved no transfer
learning, but were simply models trained using sensor data from the installed sensors (Mite, Matrix and XDK)
in three locations in each kitchen. To obtain these results, each dataset was split into 2

3 training and 1
3 testing

set. An SVM with a linear kernel was used as the classi�er and features were extracted from all available sensor
channels on each of the sensor boards. �e results were cross-validated using a repeated random sub-sampling
validation (a.k.a. Monte Carlo cross-validation), where three random training and test splits were evaluated and
the results were averaged.

Figure 3 shows the F1 score performance of the models for selected activities. As the Figure suggests, there are
three factors that a�ect the performance:

(1) Type of sensor board used,
(2) Activity being captured,
(3) Placement of the sensor within the room.

From the sensor boards we tested, we consistently observe much be�er performance from the Mites sensors.
�is can be explained by the wider range of sensor channels that the Mites provide and additional statistical and
FFT features that they compute on-board. Since Mites show the best performance as compared to the Matrix and
the XDK for even these non-transfer tests, which is arguably the simplest se�ing, we only use them for further
analysis of the transfer-learning cases.

�e rows of the heatmap in Figure 3 suggest that the activities are recognized with varying success. Activities
that provide a more discernible pro�le (e.g., vacuum cleaning due to its loudness) tend to be recognized with a
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Fig. 3. F1 score of models based on the placement (within the kitchen) using three di�erent sensor boards, for various
activities they were trained on. For this base case (non-transfer) the Mites have the best performance for almost all of the
activities we tested in the di�erent placements, as compared to the Matrix or XDK.

higher F1 score than activities that are more di�cult to discern from noise given the available sensor channels
(e.g., co�ee brewing which blends into the background more easily).

Furthermore, the columns of the heatmap suggest that the placement of sensors within the room a�ects the
resulting performance of some activities. Sensors in closer proximity to sources of events, such as washing dishes
or chopping food, perform be�er than sensors further away from the sources. �is relates essentially to the
signal-to-noise ratio during the demonstrations of activities in the di�erent parts of the room.

Finally, we note that although the performance of the models to capture the activities could be further improved,
our goal in this paper is not to achieve perfect performance. Since we are interested in the relative impact of
maintenance and expansion operations on the models, we view the results as su�cient for our purpose.

5 ANALYSIS OF EFFECTS OF MAINTENANCE AND EXPANSION OPERATIONS
�is section investigates the e�ects of various maintenance and expansion operations in IoT environments on the
performance of models and discusses the key factors that in�uence them. �e following maintenance operations
are considered:

(1) Replacing sensors with their replicas. A basic maintenance scenario in a smart home or other IoT environ-
ment is replacing devices with their replicas in case they break down. In this case, the user gets a new
sensing device of the same make and model and places it in a similar location as the previous device.

(2) Moving a sensor to another location within the same room. Over time, the utilization of spaces may change,
which may require changes in the placement of sensors within a space.
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(3) Placing a sensor in a previously uninstrumented room. Having trained models for activity recognition in
one room, a building manager or occupant may want to extend the activity recognition set-up to a new
room by simply adding a new sensor to that room.

(4) Replacing a faulty sensor or upgrading a sensor to a di�erent sensor type. When replacing a broken or
outdated sensor, users may choose to upgrade their sensor boards to newer versions or to sensor boards
from di�erent manufacturers, our fourth use case. We assume that the new sensor is placed in the same
place as the previous one.

To enable an in-depth investigation of their e�ects, we ran an exhaustive set of tests that use the described
pipeline to test the transfer of models across all available training and testing combinations of locations and
sensors in our data collection. For each of the training and testing domains, tests were executed using three
di�erent classi�ers and six combinations of sensor channels as features that were discussed in the previous
section. Using di�erent classi�ers, we aimed to test how their di�ering assumptions impact their ability to
support transfer learning in our se�ing. Our goal was also to see whether particular sensors or groups of sensors
enabled be�er transfer of models for our maintenance and expansion use cases.

�e tests used training data from a source domain and testing data from a target domain. No training data was
used from the target domain. Each test was executed three times and the extracted statistics were averaged. �is
amounted to approximately 750,000 tests. Predicted labels from each test were stored for further analysis.

�e following two sections build on these experiments and discuss the relevant �ndings. First, we will discuss
the e�ect of maintenance operations using models trained with all features available on the sensor boards and
using an SVM as the classi�er. Next, the impact of di�erent classi�ers and feature sets on the performance of
models a�er transfer will be discussed.

5.1 E�ect of Sensor Maintenance and Expansion Operations on the Performance of Models
Figure 4 gives an overview of the average performance of models transferred in di�erent maintenance operations.
One can clearly see that the performance degrades more as operations become more complex from le� to right.
In such operations, the performance of models is a�ected by larger changes in marginal distributions over
their features due to changes in the domains. �e performance decrease di�ers among activities—some more
discernible activities, such as “Alarm” or “Vacuum cleaning”, retain much more of their performance compared
to activities such as “Co�ee” or “Ke�le”. However, the heatmap shows results averaged across all placements
and spaces and as we discuss in the rest of this section, there are several pa�erns that can be seen when looking
closer at the results.

Signal-to-noise ratio. �e change in performance varies based on the original placement of the sensors. Notably,
models trained closer to the source of activity, transfer well when the sensor is replaced in that same location.
�is relates to the potential of di�erent sensor placements for capturing the kitchen activities. As illustrated by
the “running blender” activity in Figure 5, the placements result in a di�erent signal-to-noise ratio for capturing
the activities. When the sensor board is replaced with a replica, minor variations in the manufacturing process,
changes in the calibration, orientation of the sensor or changes in the environment may add to this noise. We
argue that the models closer to the activity source can perform be�er in the face of these changes and retain their
performance, since the di�erence between the noise and the signal is large enough for them to still be discernible.

Change in proximity of source and target placements to activity. �e change in distance with respect to the source
of captured activities a�er moving sensors to di�erent placements has an asymmetrical impact on the transfer.
Transferring to a placement further away from the activity results in a large decrease in the performance of the
models, whereas transfer towards the activity shows a relatively smaller decrease in the performance, and in some
cases we see a retention of the model performance. �e intuition that explains the larger performance penalty
when transferring away from an activity is that models trained closer to the activity can pick up on a larger set
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Fig. 7. Transfer across sensor boards in the same placement. Activities that can be recognized well by both sensor boards (e.g.,
washing dishes by the placement B) show good performance a�er transfer. However, the performance drops significantly if
the sensor boards are not successful in capturing the activity themselves.

of characteristics of the activity and can use a wider range of sensor channels that do not transfer well over long
ranges (e.g., accelerometer data). When transferred away from the activity, the same set of characteristics and
sensor channels are less useful. When transferred towards the activity, the models are trained on characteristics
and sensor channels that tend to also be usable closer to the activity. On the other hand, they are missing out on
the additional characteristics and sensor channels in the target domain and thus do not achieve the performance
of models trained and tested in the target domain.

Di�erences across rooms. We observed that the performance of models transferred across rooms is more
unpredictable than transfer within rooms. �is may be due to potentially di�erent properties of the rooms. �ey
may contain di�erent background noise, e.g., a noisy ice machine. �e rooms may also provide di�erent resources
that the captured activities depend on, e.g., the microwave may be quieter or closing the cupboard door may be
more dampened in one room than in the other.

Di�erences between types of sensor boards. �e heterogeneity of the available sensors across manufacturers and
their properties make transfer across sensor boards particularly challenging. �ere are noticeable di�erences
in how the sensor signals from the tested sensor boards capture activities, even a�er scaling for normalization.
Microphone signals may di�er in how responsive they are to di�erent frequencies and noise levels. Accelerometer
signals can react to vibrations using a di�erent scale of values. �e sensor boards also have di�erent properties
in how well they capture activities happening further away. Due to these di�erences among sensor boards,
the majority of tested activity recognition models resulted in low performance when transferred across sensor
boards. Nevertheless, several types of activity recognition models show good performance when transferred
across sensor boards. Such models tended to capture more easily discernible activities (e.g., washing dishes,
chopping food, blender running) and tended to use sensors in close proximity to the activities. Figure 7 shows that
for placements in close proximity to the activities, the transfer can result in performance close to the potential
performance of the sensor boards without transfer.

5.2 Impact of Classifier and Feature Set Choice on the Performance of Di�erent Transfer Cases
�is section shows that classi�ers and feature sets that achieve the best performance in tests without transfer
o�en di�er from those that perform the best a�er transfer to di�erent domains. Because of changes in the source
and target domains, the assumptions that the models make based on data from the source domain may no longer
be true for the target domain. �is means that preprocessing steps, such as feature selection, performed based on
the source domain may not �t for the target domain.
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Further, we show that by omi�ing features from certain sensor channels and using di�erent classi�ers, we can
eliminate some of the incorrect assumptions made by training the models on the source domain without the need
for using training data from the target domain to �t the models.

Performance of classi�ers on transfer. Our experiments have shown that the tested classi�ers performed
di�erently under the maintenance and expansion operations. �is can be observed based on the distribution of
test results shown in Figure 8. Since classi�ers have di�erent biases and make di�erent assumptions about their
input data, we would expect that their applicability to support transfer di�ers, as these results show. Models
trained using the Random Forest classi�er seem to over�t on the source domain since they achieve the best
performance when not transferred, however they drop below the other model types upon transfer. SVM is able
to achieve higher performance on non-transfer tests and transfer tests to replica sensors and di�erent placements
than Logistic Regression. On the other transfer tests (di�erent rooms and di�erent sensor boards), SVM and
Logistic Regression achieve comparable performance.

Performance of sensor channels on transfer. Di�erences in performance of sensor channels according to mainte-
nance and expansion operations can be seen in Figure 9. It shows that when training and testing models on the
same domain, using the full set of sensor channels generally results in be�er performance than using subsets of
them. Since the domain doesn’t change, assumptions made on the sensor channels during training should hold in
the testing phase. As domains change due to maintenance operations, subsets of sensor channels achieve be�er
performance.

Reach and directionality of sensor channels. �e change in placement of sensors o�en means that some sensor
channels that were useful in the previous placement are no longer useful in the new placement. For instance,
vibrations from a blender captured by the accelerometer sensor close to the machine are no longer possible
to capture at the other end of the room. On the other hand, signals from activities captured by other sensor
channels, such as the microphone, travel be�er over longer distances. �is shows that sensor channels have
di�erent properties in terms of the range of activities that they can capture. Other di�erences in the performance
may come from the directionality of some sensor channels. For instance, the Grid-EYE infrared array sensor
available on Mites can detect changes in the temperature directly in front of it when the ke�le is boiling water.
However, it is not able to do so when not facing the ke�le. Similarly the motion sensor may be shielded in certain
locations. We also note that when adding a new sensor to a new room, the sensor can both be placed in a location
that resembles the placement in a similar room or in a widely di�erent placement. Since the sensor may end
up in a placement very similar to the source placement, this di�erentiates the case from transfer to changed
placements in the same room.

Omi�ing incompatible sensor channels across sensor boards. Models transferred across sensor boards show less
clear pa�erns in the success rate of sensor channels. We argue that the lack of a trend in the performance results
is caused by the di�erent behavior of sensor channels across sensor boards as shown in Figure 6. Since some of
the sensor channels may capture activities less well, omi�ing their features from the models can provide a be�er
performance on transfer. Figure 10 supports this by showing transfer results for the “blender running” activity
trained on the XDK board using di�erent sensor channels. It shows varying performance of the sensor channels
based on the type of the targeted sensor board.

6 PIPELINE FOR RECOMMENDATION OF MODELS TO TRANSFER
�e previous section showed that there are a number of factors that in�uence the performance of transfer learning,
with some of them having a more drastic e�ect than others. We showed that performance varies based on the
characteristics of the maintenance operations and based on the classi�ers and feature sets used to train the
activity recognition models. We argue that variations in performance of the transferred models make it di�cult to
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Fig. 9. Heatmaps showing frequency of which sensor channels enabled the best performing models for the analysed activities
under di�erent maintenance operations. The darker the color, the lower the frequency; the lighter the color, the higher the
frequency of a sensor channel resulting in the best performing model.
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deterministically identify a single solution for improving the transfer for all activities, sensor boards and changes
in placements and spaces.

However, based on the intuition behind the results introduced in the previous sections, we propose that the
performance of models a�er transfer may be predicted given information about the transfer. Predicting the
performance of models a�er transfer makes it possible to decide whether to transfer a certain model or not and
what features and classi�ers to use to train it with only a fraction of the training data from the target domain
that would be required for training brand new models for the target domain.

�is section introduces a novel pipeline for evaluating the transfer of activity recognition models under
maintenance operations in a smart home se�ing. Using the pipeline, we aim to provide a generalizable process
that only requires a small fraction of training data from the target domain that would otherwise be required to
train new models. �is proposed process:

(1) Creates a large number of models that use di�erent classi�ers and feature sets to detect an activity for
the non-transfer case.

(2) Eliminates the subset of models that are predicted to perform poorly when transferred to the target
domain.

(3) Chooses a model representation (classi�er and feature set) that is predicted to achieve the best performance
in the target domain.

To achieve these goals, we propose a pipeline that makes use of our previous experience in transfer of models
for maintenance and expansion operations. In order to ensure a relatively high performance of transferred models,
the pipeline can request users to retrain activities that would transfer with low performance. To train the pipeline
to decide when to transfer or not, we had to choose a minimum acceptable performance of the transferred models.
�e related work [40] has used accuracy of 80% as acceptable performance for activity recognition. Due to the use
of binary classi�ers and an uneven positive and negative class distribution, we found it more useful to measure
performance using F1 score as a metric. Related work on transfer learning in smart homes [43] worked with F1
performance in the range of 0.4 to 0.7. To a�ain an acceptable performance a�er transfer, we decided to set an
aggressive F1 score of 0.75 as the targeted lower bound for performance of transferred models. We argue that in
cases where the transferred activity recognition models are predicted to perform worse than 0.75, the user may
gain potentially signi�cant improvement in the performance of the activity recognition by retraining the models
on the targeted domain anew.

�e pipeline consists of several steps that are shown in Figure 11. �e rest of this section discusses the individual
steps in more detail.

6.1 Initial Prediction of Transferability of Activities
�e initial step aims to decide whether the pipeline should a�empt to transfer any given activity or request
that users retrain them on the target domain. Requesting users to retrain activities that are unlikely to transfer
well, provides us with training data that can be used to evaluate the transferability of models for the remaining
activities. �us, by rejecting some activities early, the pipeline aims to acquire labeled training data from the
target domain that can be used to assess the �tness of models for other activities for the domain.

As we noted before, our goal is to enable transfer of models with a minimal amount of data from the target
domain. By leveraging labeled data from the target domain that do not represent the activity being transferred, we
can signi�cantly reduce the amount of labeled data that needs to be collected. Take as an example, an IoT-enabled
environment where you have 50 di�erent activities being recognized. If a building manager were to create a
new IoT environment (e.g., room) where you wanted to recognize the same 50 activities, the obvious solution
would be to collect new training data for the new environment and train a new set of 50 classi�ers, essentially
replicating the amount of work performed in creating the initial classi�ers in the original room. Instead, by
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Predict initial transferability 
of activities

Cross-validate multiple 
model-representations on 

labeled source data

F1 score

Evaluate on target data not 
belonging to transferred 

activity

[≥ 0.75]

Request retraining
of activity

Prediction of F1 performance

[≥ 0.5]

[< 0.5]

Specificity

Predict performance rank 
using meta-classifier

[≥ 0.95]

Reject models
[< 0.75]

Reject models
[< 0.95]

Rank

Sort by rank and specificity 
in descending order

[> 0]

Reject models
[= 0]

Model to transfer

Fig. 11. Activity diagram showing steps of the proposed pipeline. The pipeline starts by predicting initial transferability
of activities for the maintenance operation. Activities that are unlikely to perform well a�er transfer are suggested to be
retrained by the user. Subsequently, di�erent models with various classifiers and feature sets are cross-validated on the
source domain. The pipeline further evaluates their specificity using samples from the target domain belonging to activities
that were suggested to be retrained in the first step. Models are ranked using a trained meta-classifier and the one with the
highest rank and specificity is transferred. Thresholds are provided for each step in order to eliminate models not fit for
transfer. In case all models are discarded a�er any of the steps, no models are recommended.
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leveraging labeled data for a small number of activities, we can save e�ort. �e building manager can collect
labeled data for a small number of activities, say for activities 1 through 5. �en, for these activities (1-5) for
which there is labeled data, models can simply be retrained for the target domain. But, for the remaining activities
(6-50), target domain data for activities 1 through 5 can serve as the negative examples for determining their
speci�city (true negative rate). By taking this approach, we can reduce the required amount of labeled data from
the transfer domain by a factor of 10 (from 50 activities for retraining, down to 5) in our hypothetical example.

To enable the initial prediction of transferability, the pipeline uses a meta-classi�er trained using experience
from previous maintenance operations. �e previous experience was collected based on the performance of
models transferred in other maintenance operations in our data collection. Performance of the best performing
model representations (classi�er and feature set) for each activity-maintenance operation is used to train the
meta-classi�er to predict the best-case results. A threshold of 0.5 F1 score was chosen and a binary classi�er
was trained to predict bad (< 0.5 F1 score) or good (≥ 0.5 F1 score) performance of models. Two properties were
considered when choosing the threshold: recall of the pipeline measuring how many transfers with acceptable
performance were correctly identi�ed as such and su�cient number of retrained activities in order to evaluate
other models. Our previous experimentation showed that at least 4 retrained activities are necessary to evaluate
other models. We used a binary Random Forest classi�er with the following meta-features:

(1) Type of the maintenance operation (i.e., change of placement, room, sensor or sensor board).
(2) Activity being transferred.
(3) Types of source and target sensor boards.
(4) F1 score performance of recognition for the activity on the source domain using an SVM model with

features from on all sensor channels.
Adaptively selecting activities to retrain had the welcome property that more activities were chosen to be

retrained for more complex operations (e.g., change of room, change of sensor boards). �is meant that more
training data could be used to evaluate other transferable models in operations where it was needed more. In our
data collection consisting of 16 activities, this initial step requested that an average of 4 activities be retrained
when replacing sensors with their replicas, 6 in placement and room changes and 8 when sensors are replaced
with di�erent types of sensor boards.

6.2 Training and Testing Multiple Model Representations on the Source Domain
�is step trains multiple types of binary models for the targeted activity on labeled samples from the source
domain. �e di�erent models are trained using di�erent combinations of sensor channels and classi�ers. We
discussed the sets of sensor channels and classi�ers considered in our experiments in Section 4.1. If there are m
sensor channels and n classi�ers being considered, we will produce m x n models in this step. Since some of the
models might not be able to capture a given activity e�ectively (e.g., a model trained on inertial sensors won’t
recognize conversations), we cross-validate the models using labeled data from the source domain and reject ones
that fall below our performance threshold. We use repeated random sub-sampling cross-validation (a.k.a. Monte
Carlo cross-validation), where three random training and test splits are evaluated and the results are averaged.
We use the F1 score to evaluate the performance and chose a threshold of 0.75 in our experiments. �is threshold
was set in order to eliminate models that a user might consider unreliable. We did not choose a higher threshold
as our analysis showed that some transfer operations might in fact improve the performance of models (e.g.,
transferring a model for recognizing washing dishes from a sensor far away from the sink to one closer to it).

6.3 Evaluate Specificity of Models on the Target Domain
�is next step makes use of training data from the target domain acquired from requesting retraining of some
activities in the �rst step and uses it to evaluate models trained in the second step. �us, we propose to use
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samples not belonging to the transferred activity and extract the true negative rate of the models on the data.
�is enables us to identify and reject models that leverage di�erent background and ambient sensor values that
would be expected in the target domain, such as when transferring models across rooms or sensor boards.

Once the speci�city of each of the models on the target domain is calculated, models with speci�city below a
threshold are rejected. We intentionally chose a high threshold of 0.95 in order to avoid confusion of predictions
from the transferred models with other activities (i.e., false positives), which would result in an annoying user
experience. Furthermore, our data has shown that by se�ing the threshold at 0.95, we can eliminate a signi�cant
portion of models with low F1 scores while keeping enough models with good recall.

6.4 Predict Performance of Models
In this step, we make use of meta knowledge from previous maintenance operations to predict the performance
of models on the target domain a�er transfer.

In order to make use of information about the maintenance operations (e.g., sensor boards used, maintenance
operation, sensor channels), our chosen meta-features di�er from those frequently used in algorithm recommen-
dation [38]. Such models tend to build on statistical or information-theoretic features of the datasets, model-based
descriptors or landmarks of the performance of models on sub-tasks. To capture the identi�ed pa�erns in the
performance of models a�er transfer, our meta-features also explicitly describe the maintenance tasks being
performed. Concretely, we use the following meta-features to train the classi�er:

(1) Type of the maintenance operation. �is set of meta-features describes the executed maintenance operation.
In particular, they state if a replica or the same sensor instance is being used, whether the placement or
room were changed and whether the type of the sensor board was changed.

(2) Activity recognized by the model. As we have shown, the performance of models a�er transfer in a large
part depends on the activity being recognized and its discernibility.

(3) Types of source and target sensor boards. �ese meta-features give the exact type of the sensor boards in
the source and target domains.

(4) Classi�er being used and sensor channels that the features were extracted from. �ese types of meta-features
enable us to compare the performance of multiple model representations.

(5) F1 score of the model in the source domain. We found that the performance of models a�er transfer (e.g.,
when replacing a sensor with replica) depends on the ability of the model to capture the task in the source
domain.

(6) Speci�city of the model on the target domain. �is is a landmarking meta-feature that can give an indication
about the performance of the model on the target domain.

(7) Number of training samples used to build the model. �is is a simple meta-feature o�en used in algorithm
recommendation. It can give an indication of the robustness of models to changes in the source and
target domains.

Although one could come up with additional meta-features that can predict the performance of the transfer,
we tried to avoid meta-features that would require complex user input to describe the maintenance and transfer
operations.

We used Random Forest as the classi�cation algorithm. It is trained to rank the performance of the transfer
tests using the meta-features. �e performance rank is computed using the F1 score of the models a�er transfer,
which is translated into four meta-targets based on di�erent intervals.

(1) Rank 0 (rejection): F1 score within [0; 0.75).
(2) Rank 1: F1 score within [0.75; 0.85).
(3) Rank 2: F1 score within [0.85; 0.95).
(4) Rank 3: F1 score within [0.95; 1.0].
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All models that are assigned rank 0 in testing are rejected and not further considered for transfer to the target
domain. Ranks 1 to 3 are used to sort the models according to the predicted performance in the next step.

�e upper bound for rank 0 (0.75) was chosen according to our expectation for the reliability of transferred
models, as argued at the beginning of this section.

6.5 Choice and Transfer of a Single Model
In case one or more models were selected in the previous step, this �nal step chooses one of them to transfer
to the targeted domain. To do so, it chooses a model with the highest rank as predicted in the previous step
and highest speci�city on the target domain. Speci�city was chosen as the second sorting criterion since it also
provides a measure of performance of the model on the target domain.

7 EVALUATION OF THE PROPOSED PIPELINE
�is subsection evaluates performance of the proposed recommendation pipeline. We focus on two properties of
the pipeline: coverage and performance. Coverage relates to the number of activities that the pipeline recommends
for transfer in di�erent maintenance operations and therefore the saved e�ort for users who do not need to retrain
those activities. �e performance of the recommended models is compared against three di�erent techniques
(retraining, using the same model representation and an oracle).

7.1 Training the Pipeline
To evaluate the pipeline, we make use of transfer results from maintenance operations recorded in our data
collection. In total, the following number of maintenance and expansion operations were available to us: 3
replacements of sensors with their replicas in Synergy kitchen, 18 changes of sensor placements in three kitchens,
54 expansions of activity recognition across di�erent combinations of placements between the three rooms and
52 instances of sensor replacement with other types of sensor boards (short by two due to malfunctioning Matrix
sensor in one placement).

�e proposed pipeline needs to be trained using previous experience from maintenance operations. �erefore,
some maintenance operations needed to be used to train the pipeline for supporting other maintenance operations.
We decided to avoid randomized cross-validation techniques to evaluate the pipeline, since a random choice of
previous tests may provide an unfair advantage in some cases. For instance, performance of transferring an SVM
model for washing dishes from location A to B, can suggest how transfer of a Random Forest model for the same
activity and locations performs.

�erefore, we used a repeated hold-out validation, where all experience from related maintenance operations
was le� out from training data based on tested operations. �us, when testing replacements of sensors with their
replicas, all previous experience from tests of any activities and model representations in the tested placements
was le� out. When testing performance of changes in sensor placements, all previous experience related to
transfer between the tested placements was le� out. In expansion to new rooms, previous experience from
transfer tests between any placements (not just the tested placements) across the targeted rooms was le� out.
Finally, when testing transfer across di�erent types of sensor boards, previous experience for transfer across any
sensor boards in the tested placement was le� out.

7.2 Evaluation of Saved E�ort and Coverage
�is section evaluates the saved e�ort and amount of coverage in di�erent maintenance and expansion operations.
Saved e�ort constitutes of activities that were transferred in the operations and therefore did not have to be
retrained by users. We further use the term coverage to talk about the proportion of activities that the pipeline
recommended for transfer out of all activities that could potentially be recognized in the target domains. To de�ne
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Table 1. Saved e�ort and coverage of investigated maintenance and expansion operations. The average number of activities
transferred without retraining is used to calculate the saved e�ort. To calculate saved e�ort in minutes, the length of training
for these activities is taken into account (6 minutes for long and 3 minutes for each short activity). Coverage is calculated as
the average proportion of transferred activities to all activities that could be captured in the given se�ings.

Operation Saved e�ort (# act.) Saved e�ort (minutes) Coverage
Sensor replacement with replica 7 out of 13 37 out of 62 53%
Change of sensor placement 6 out of 13 32 out of 62 49%
Expansion to new room 5 out of 12 26 out of 58 41%
Sensor board replacement 1 out of 6 8 out of 32 5%

activities that could be recognized, we use the same threshold as before for the acceptable performance of activity
recognition models: 0.75 F1 score. �erefore, to calculate coverage, we calculate the proportion of activities that
were recommended for transfer out of all activities that could be recognized with acceptable performance in the
target domain if they were retrained.

Table 1 shows the saved e�ort and coverage for each maintenance operation. It shows the average number
of transferred activities as well as their training time that is saved by the transfer for di�erent maintenance
operations. �e saved training time is calculated according to the length of training used in our data collection: 6
minutes for long activities and 3 minutes for short activities (around 6 seconds per repetition).

Due to the di�erences among maintenance operations, we see a di�erent number of transferred activities
according to the performed operation. As the operations get more complex and result in worse performance of
transferred models, the pipeline adapts and may not recommend any models for certain activities. �ere are two
common reasons why the pipeline might not recommend any model for a maintenance operation:

(1) None of the tested types of model representations can achieve an F1 score performance higher than the
speci�ed threshold.

(2) �e pipeline mistakenly failed to accept models that would actually perform well on the target domain.
�e pipeline aims to minimize rejecting transferable models for the second reason while only rejecting models

for the �rst reason. �erefore, the accuracy of the pipeline can be measured against the ground truth of whether
the activity models actually performed with F1 score above the threshold on the target domain. In this evaluation,
the pipeline achieves an accuracy of 0.88. �erefore, for 88% of activities in maintenance operations it correctly
identi�ed whether any models should or should not be recommended for transfer. We observed more false
negative than false positive recommendations. �e proportion of correctly identi�ed negative activity transfers
in maintenance operations (i.e., speci�city) was 0.94, which was higher than the proportion of correctly identi�ed
positive transfers (i.e., recall): 0.74.

Figure 12 shows per-activity coverage of models recommended by Our pipeline compared to coverage of an
Oracle pipeline that uses ground truth to only choose models that perform with the targeted performance a�er
transfer. It shows that for most activities and maintenance operations, where the Oracle technique identi�ed
transferable models, Our technique also provided recommendations. On the other hand, for some activities
such as “Microwave bu�on press” or “Vacuum cleaning”, Our technique failed to recommend any models or
recommended more models than the Oracle. We a�ribute the misclassi�ed performance of the models to two
reasons:

(1) Bias of the pipeline. In some case, the meta-classi�er could not distinguish between well and low
performing transfer using the available meta-features. For instance, for the transfer of “Blender running”
across rooms, Our method recommended models for all operations while the Oracle shows that only

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 9, No. 4, Article 39. Publication date: March 2017.
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Fig. 12. Proportion of activities (in %) that were transferred without retraining (coverage) as recommended by Our technique
and Oracle technique. Oracle provides the ground truth that Our aims to approximate.

83% of them should have been recommended. Improving the meta-features to provide more information
about the maintenance operation could improve these results.

(2) Lack of training experience. In some cases, more training data from previous maintenance operations
would improve performance of the pipeline. For instance, for each maintenance operation dealing with
replacement of sensors with their replicas, our data collection provided experience from only two other
such maintenance operations that were performed in quite di�erent placements. Given training data
from maintenance operations in more similar placements, the coverage of recommended models when
replacing sensors with replicas could improve and be�er re�ect coverage of the Oracle.

Nevertheless, it is important to note that any activities that can be automatically transferred using our pipeline
saves e�ort for a building manager/sensor installer/occupant who would otherwise have to retrain all the activities
for the new environment. As shown in Table 1, Our technique provides a coverage of 53%, 49%, 41% and 5% based
on the maintenance operations which is a signi�cant reduction in the e�ort for the users.

7.3 Evaluation of Performance
We now investigate the performance of the models that are selected using Our pipeline. First, we compare the
performance of Our technique to the performance of a Naive technique. �e Naive technique always transfers all
models of activities using the same model representation (SVM classi�er and features from all sensor channels),
without consideration of how they might perform a�er transfer. �e Naive technique achieves median F1 score
of 0.32 (standard deviation 0.34) a�er transfer. �e complete per-activity and per-operation transfer performance
of the Naive technique is shown in Figure 4. On the other hand, Our technique achieves a median F1 score
of 0.91 (SD 0.22). �is huge di�erence shows the need for selective transfer of models and choice of model
representations (classi�ers and feature sets) to use on transfer. On the other hand, avoiding the transfer of models
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Table 2. Average performance loss in F1 score of Our technique compared to three other techniques.

Operation Retraining Same model Oracle
Sensor replacement with replica 0.04 -0.08 0.03
Change of sensor placement 0.09 -0.16 0.06
Expansion to new room 0.17 -0.16 0.08
Sensor board replacement 0.17 -0.01 0.09
Combined 0.14 -0.14 0.07

that result in poor performance on the target domain leads to a lower coverage of the supported maintenance
operations as discussed in the previous subsection.

We further compare the performance of Our technique to three other techniques only for activities and
maintenance operations that the pipeline provided recommendations for. By considering only maintenance
operations where the pipeline provided recommendations, we can compare the choice of model representations
chosen by each technique. We compare the performance of recommended models using Our technique to the
following three techniques:

(1) Retraining. In this case we consider the potential performance of activity recognition if the user retrained
the targeted activities on the target domain. Models trained using SVM and all sensor channels are used.

(2) Same model. �is case considers transfer of models that always use the same model representation—SVM
classi�er and all sensor channels.

(3) Oracle. �is technique evaluates performance of all available model representations using all labeled data
from the target domain and chooses the one with the best performance.

Table 2 shows the performance loss of Our technique compared to the other 3 techniques for di�erent
maintenance operations. On average, it shows a decrease in performance of 0.14 F1 score compared to Retraining,
an improvement of 0.14 F1 score compared to Same model and a decrease of 0.07 compared to an Oracle. However,
the performance is not consistent across maintenance operations. As operations become more complex, the
performance compared to Retraining decreases more. We see two reasons for this behavior:

(1) Di�erences between domains. As discussed in Section 5.1, some operations cause a larger change in the
distributions of data from di�erent sensor channels. For instance, when moving a sensor to another place
within a room, the vibrations sensed using an accelerometer will change more than when replacing the
sensor with a replica in the same place. �erefore, some models cannot achieve the same performance as
retraining for the domains. Using additional recalibration or methods for domain adaptation to further
adapt models for the target domain could help with this problem.

(2) Unpredictability of some operations. Some operations are more unpredictable than other. As discussed in
Section 5.1, when adding a sensor to a new room, the target room may be more or less di�erent from the
source room. Similarly, placements within rooms may have di�erent e�ects on the performance a�er
transfer, based on their proximity to recognized activities. In such operations, the pipeline mis-classi�es
the performance of models more commonly in operations than in “Sensor replacement with replica” or
“Sensor board replacement”. As mentioned when discussing coverage, adding more descriptive meta-
features to decrease the bias of the pipeline or collecting more previous experience to train it could help
with this problem.

Figure 13 shows the performance of models recommended by Our technique a�er transfer as well as the
performance loss compared to Retraining for individual activities. One can see that the performance di�ers based
on the activities and types of maintenance operations. �is can further be seen in the performance distribution
of transferred models shown on the le� side of Figure 14. �e distribution shows that more complex operations
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Fig. 13. Performance of models transferred using Our technique (above) and their performance loss compared to Retraining
(below) for individual activities.

provide longer and thicker tails with low-performing models. In the case of transfer across rooms, we observe a
number of outliers that perform much worse than the rest of transferred models. As discussed above, transfer to
unknown rooms can be unpredictable. �is is illustrated by the activity “Cupboard door opened” in Figure 13,
which was negatively a�ected by di�erences in resources (types of cupboards) in the source and target rooms.
On the other hand, the distribution of models transferred across di�erent sensor boards, shown in Figure 14,
contains fewer outliers (the tail is shorter). It is more predictable since replaced sensor boards don’t change
placements and the e�ect of sensor board changes can be learned from previous experience in other placements
and rooms. However, the median performance is lower (0.8 F1 score) and closer to the lowest threshold for
acceptable performance (0.75 F1 score) that the pipeline aims to achieve. �us, in the transfer across sensor
boards, we see fewer high-performing models due to the vast di�erences between the source and target domains
but also fewer outliers with performance close to a 0 F1 score thanks to the predictability of the transfer.

Overall, Our technique achieves a median F1 score of 0.98 (SD 0.1) when replacing a sensor with its replica,
0.96 (SD 0.19) when moving sensor within a room 0.87 (SD 0.24) when adding a sensor to a new room and 0.8
(SD 0.12) when replacing a sensor with a di�erent sensor board. Across all operations, Our technique achieves a
median F1 score of 0.91 (SD 0.22), which is an improvement over the Same model with 0.82 (SD 0.3) and aims to
approximate the Oracle with 0.97 (SD 0.12) (see performance distribution on the right side of Figure 14).

7.4 Illustrative Examples
To illustrate how bene�cial the pipeline is in supporting di�erent maintenance operations, we give concrete
examples of transfer results for selected cases from our experiments. To select the individual cases, we sorted all
cases by their coverage and chose the median case for each operation. Confusion matrices of the transferred
activities are shown in Figure 15.
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Fig. 15. Confusion matrices of activities recognized by transferred models recommended by the pipeline in selected mainte-
nance operations. The results illustrate that with the growing complexity of the maintenance operations, the number of
recommended models reduce. However, the performance of the activity recognition using the transferred models remains
similar across the maintenance operations.
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In the replica replacement case in placement C of the Synergy kitchen, we see that 1 out of 5 short activities
and 6 out of 9 long activities were transferred. Short activities as well as long achieved an average F1 score of
0.97. When moving a sensor from placement A to B in the Synergy kitchen, 2 out of 7 short activities and 5 out
of 9 long activities were transferred. Short activities achieved an average F1 score of 0.94 and long 0.98. When
extending activity recognition trained in placement C in the Sco� kitchen to placement C in the Synergy kitchen,
1 out of 5 short activities and 5 out of 9 long activities were transferred. Short activities achieved an average F1
score of 0.83 and long 0.92. When replacing an XDK with a Mite sensor in placement C in Synergy kitchen, only
1 out of 9 long activities could be transferred. It achieved an F1 score of 0.88.

7.5 Summary of Results
We have shown that the pipeline adapts to more complex scenarios by transferring a smaller number of activities.
By selectively transferring models, it vastly improves the performance of transferred models over a naive approach
that would result in an average performance of 0.32 F1 score a�er transfer. Furthermore, the choice of di�erent
model representations (classi�ers and feature sets) enables an improvement in performance of the transferred
models over using the same model representations by 0.14 F1 score on average. �e transferred models do
su�er a performance loss compared to manual retraining in the target domain depending on the maintenance
operation: by 0.04 F1 score in replacing sensors with replicas, 0.09 in change of placement, 0.17 in change of
rooms and 0.17 in change of sensor boards. �e higher performance loss in placement and room change compared
to replica change is in part due to the changes in source and target domains that are hard to predict. In such
cases, most models achieved a relatively good performance, however several outliers with very low performance
were transferred. �e performance loss in transfer across sensor boards is more predictable and although models
transferred have a generally lower performance due to the vast di�erences between domains, we do not observe
outliers with very low performance (close to 0 F1 score). We argued that the performance could be improved by
reducing the bias in the pipeline with more descriptive meta-features and by using more training experience.

In order to retain the performance of transferred models, certain activities that would result in poor performance
are not transferred and therefore need to manually retrained on the target domain. �e number of activities
that need be retrained is higher for more complex maintenance operations, such as replacing sensors with
di�erent types of sensor boards. Nevertheless, the pipeline enables the savings of signi�cant e�ort for retraining.
Concretely, the median savings are: 37 out of 62 minutes are saved in changes with replicas, 32 out of 62 in
placement change, 26 out of 58 in room expansion and 8 out of 32 in sensor board changes.

8 DISCUSSION
In this paper, we showed that various everyday maintenance and expansion operations o�en have a negative
e�ect on the performance of activity recognition models trained using data from multi-sensor packages. We
characterize this problem as one of transfer learning, where we take some knowledge from a source domain
(the environment before the maintenance or expansion operation) to a target domain (the environment a�er
the operation). We also identi�ed di�erent factors that a�ect this transfer performance, such as the properties
of the activity being recognized (e.g., its discernibility against background noise), changes in the calibration of
sensors or behavior of sensor boards, changes in the proximity of placements to the activity and changes in the
background noise and appliances when moving to new rooms. �ese changes cause shi�s in marginal probability
distributions over features that a�ect the performance of transferred models. Furthermore, we show that due to
these factors some of the assumptions made by models trained on the source domain may no longer hold on the
target domain, and by omi�ing features from sensor channels that transfer poorly or choosing algorithms that
provide di�erent assumptions, we can correct some of the di�erences in marginal distributions and improve the
performance a�er transfer.
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Our goal is to avoid having to retrain activity recognition classi�ers for the new transfer state, as this requires
new data collection and (most likely) manual annotation of that data to serve as activity labels for the retraining.
�is would have to be done for every activity that is being transferred to the new target domain. Instead, to
enable the transfer of activity recognition models for our diverse maintenance and expansion cases without the
need for retraining all activities, we proposed a meta-learning approach. �e approach aims to avoid negative
transfer of models with suboptimal performance, which we identi�ed as an important problem due to a large
variation in the performance of models a�er transfer in the diverse cases. To do so, it learns from previous
experience in maintenance operations to capture existing pa�erns in how models performed a�er transfer in
previous se�ings and predicts transfer performance of di�erent model representations in new se�ings. It consists
of several steps: early identi�cation of activities to retrain, cross-validation of multiple model representations
on the source domain, evaluation of speci�city of the models on the target domain using activities retrained
in the �rst step, prediction of the performance of the models a�er transfer using a ranking meta-classi�er and
the choice of the best candidate to transfer based on assigned rank and speci�city. Models are rejected using
thresholds and conditions a�er each step and the pipeline may terminate at any step in case no suitable models
are identi�ed.

Our evaluation showed that the pipeline provides good performance in not transferring any models, when
none of the tested models is able to reach the desired performance (set by a threshold of 0.75 F1 score). Overall,
the approach resulted in models that had a true negative rate (i.e., speci�city) of 0.94, which is important because
we saw a large number of cases where no models could transfer with good performance. Also, as a result of
this high value, we saw a similar distribution in the performance of recommended models across the di�erent
maintenance operations, even though, for instance, models transferred across di�erent rooms tend to provide
lower performance on the target domain than models transferred within rooms. �is means that fewer activity
recognition models were recommended for transfer in the more complex maintenance operations, but they
maintained a high level of performance.

However, our approach makes an important tradeo� in coverage that needs to be considered. �ere were a
number of cases where our approach recommended no models for transfer; it rejected all proposed models as it
did not assess any of them as having high enough performance for the transfer domain a�er a maintenance or
expansion operation. �is resulted in decreasing coverage as the operations became more complex (down to
53% of activities in replica maintenance cases, 49% of activities in placement change cases, 41% of activities in
expansion to new spaces cases, and to 5% of activities for replacing with/upgrading to a new sensor). In these
cases, we argue that it is be�er to ask the user to retrain the activity using training data from the target domain
than to transfer a model that would perform poorly on the target domain. As there are still a large number of
cases where our approach recommends a high performing model, it will still save e�ort in retraining, just not for
every activity-maintenance operation combination.

We observed some bias of the meta-classi�er used in the pipeline on the tested cases. In certain cases, the
provided meta-features did not allow it to capture all of the factors that in�uence the performance of models a�er
transfer. �is resulted in it failing to recommend well-performing models in cases where it could not distinguish
from models that previously led to suboptimal performance. We argue that its performance could be improved
by adding meta-features descriptive of factors that in�uence the transfer performance that we identi�ed in
our analysis. For instance, meta-features that describe the proximity of the source and target placements to
the activity, di�erences in the appliances when transferring across rooms, materials and other properties of
the rooms, as well as information or characterizations of the sensor boards or the activities, could enable the
meta-classi�er to be�er predict the performance of models a�er transfer. �is might reduce the number of false
negative predictions and improve the recall of the pipeline, which was 0.74 in our tests. �ere is obviously a
tradeo� to be made here regarding the extra work that would be necessary to characterize the activities being
performed and the environments being maintained or expanded to, with the improved activity recognition
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performance and likely, improved coverage. �is extra e�ort is still likely to be a reduction from that required to
completely retrain activity recognition models for the new target environments.

�e evaluation of multiple model representations (di�erent classi�ers and features based on di�erent com-
binations of sensor channels) by the pipeline improved the overall F1 score performance of the recommended
models compared to using the same model representation by 0.14 on average. �e recommended models had a
median F1 score of 0.91. �is score provides only a loss of 0.07 in F1 score on average compared to using the best
available model representation for transfer (only known to an Oracle, or if labeled training data is available for
the activity being transferred). �e loss compared to retraining activities in the target se�ing anew depends on
the type of maintenance operation and ranges from 0.04 to 0.17 F1 score.

Our approach does not require additional e�ort from end-users compared to retraining activity recognition.
From the end-user point of view, they only need to retrain a smaller set of activities that the pipeline did
not transfer. �e overhead of the pipeline is mostly computational and relates to the need to collect previous
experience to train the meta-classi�er used in the pipeline. Collecting the training experience requires training
data of activities from before and a�er the maintenance operations. In this paper, the used previous experience
consisted of our data collection from three rooms, each with three di�erent placements. We envision the system
being deployed as part of a multi-user Cloud-service enabling end-user programming of IoT environments
(consider the IFTTT2 service as an example). In such a system, the proposed pipeline could be trained over time
using data from situations where users had to retrain activity recognition due to maintenance operations. By
crowd-sourcing the experience from maintenance operations, the system could gradually improve its transfer
learning capabilities with li�le or no experience from maintenance operations at the start.

We argue that our meta-learning approach is generalizable since it does not assume speci�c types of models.
�e pipeline can evaluate and recommend models built using any classi�ers and sensor channels. Other activity
recognition maintenance scenarios could be supported by adapting the meta-features for the meta-classi�er. We
see potential for the improvement of the generalizability of the pipeline to new activities and sensor boards by
using meta-features that describe the properties of the activities and sensor boards instead of directly referring to
them. �is could enable the meta-classi�er to predict the performance of new activities and sensor boards a�er
maintenance operations without prior training with them. For activities, statistical and information-theoretic
meta-features [38] such as the signal-to-noise ratio could be extracted. Sensor boards could be described using
their properties or by extracting similar statistical a�ributes from their data. Since we see this as orthogonal to
our research questions, we trained the meta-classi�er using explicit information. However, we see potential for
future work to expand the approach.

9 FUTURE WORK
In addition to the future work we described in the discussion, we feel that there are a number of opportunities
for further research. First, in terms of limitations, we only captured data from a small number of people in a
small number of similar locations. �e activities performed in these locations were “performed” and not naturally
occurring behaviors at the time of data capture, and we made sure that multiple activities did not overlap each
other. While this is clearly a limitation of our data collection, these are issues that commonly occur in “traditional”
activity recognition data collections. �ey can be addressed in future work, and the noise that results from more
varied and naturalistic se�ings can be considered by our proposed pipeline.

In this paper, we described four speci�c types of maintenance and expansion operations. In the future, we
would also like to consider further operations such as adding the recognition of new activities to a room, a
recon�guration of the room that impacts sensing channels (e.g., adding a large piece of furniture), and adding
additional sensors to a space. While we focused on using a single multi-sensor package in each room in this

2h�ps://i��.com

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 9, No. 4, Article 39. Publication date: March 2017.

https://ifttt.com


Supporting Maintenance Operations for IoT-based Activity Recognition using Transfer Learning • 39:31

work, it is certainly likely that an occupant will add another IoT device that may have accessible sensor streams
that can be leveraged. In our follow-up work, we would like to investigate how our meta-learning pipeline can
be used to support this and other everyday maintenance and expansion operations.

Finally, we also recognize a further opportunity to improve the performance of transferred models in the target
domain. In our work, we did not make any changes to the models, but transferred them whole. In the future,
we could explore how to adapt these models to have improved performance for the target domain. Domain
adaptation with or without labeled target data could be applied [10, 11, 14]. Alternatively, on-line learning could
be used to self-calibrate the transferred models using their own predictions with high con�dence values as ground
truth, as proposed by Forster et al. [20] for wearable activity recognition. However, recalibration alone is not
su�cient to enable transfer. In some cases, as we have shown, transfer is not possible as the domains are too
di�erent, or the performance in the non-transfer case is too low. �ere is still a need to learn what models are
likely to perform well when transferred, so our proposed meta-learning pipeline is still required.

10 CONCLUSIONS
In this paper, we described the problem of supporting maintenance and expansion of activity recognition using
multi-purpose sensors in smart environments. We characterize these operations as instances of transfer learning.
We identi�ed and investigated the e�ect of four maintenance and expansion operations on the performance of
models transferred within a data collection from three kitchens and 16 activities. We demonstrated through our
data analysis that there is a large variance in the performance of transferred models depending on factors of
the transferred activities, sensors boards, sensor placements and used machine learning models (classi�ers and
feature sets).

�is led us to focus on the problem of preventing negative transfer within transfer learning of the activity
recognition models. We proposed a novel algorithm recommendation pipeline that uses meta-knowledge from
previous maintenance operations to assess the transferability of models to the target domain and recommend
models that are expected to perform well. It evaluates the performance of multiple types of model representations
on the source domain, tests the speci�city of the models on the target domain using a minimal amount of
labeled data and applies meta-learning to predict the performance of models on the target domain. �e pipeline
identi�es and discards 94% of transfers in maintenance operations that exhibit suboptimal performance. Despite
the di�erences in complexity of the identi�ed maintenance operations, we achieve comparable performance of
transferred models across them, with a median F1 score of 0.91. �e selection of model representation for each
transfer case enables us to improve the F1 score performance over using the same model representation by 0.14
on average.

Due to the complexity of the problem, we highlight some trade o�s that our approach introduces. In particular,
we trade coverage of transferred activities within maintenance operations in favor of ensuring a high level of
performance of the transferred models. For the use cases that do not transfer, models will have to be trained
anew. However, any models that do transfer save signi�cant e�ort of collecting data and manually labeling those
for each activity. Another trade o� introduced is for improving the recommendations that our meta-learning
pipeline makes. A�er evaluating the F1 score of the models in the non-transfer case, any models not �ltered out
are further evaluated for speci�city. To perform this step, a building manager, will need to collect labeled data
for a minimal set of activities in the target domain, to ensure that the models for the remaining (larger set of)
activities that were trained only on the source domain are appropriate to transfer. To identify the initial set of
activities to collect data from, our pipeline rejects activities that are unlikely to transfer well in the given se�ing.
�ese early-rejected activities can then be suggested to be retrained by the building manager, following which
transfer of the rest of the activities may be resumed.

We discussed several opportunities for future work. In order to decrease the bias observed in the pipeline,
we suggest using meta-features with more descriptive power to capture the identi�ed factors that in�uence the
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transfer performance. Furthermore, we propose changes to the used meta-features to capture reusable pro�les
and properties of activities and sensor boards in order to enable the pipeline to adapt to new activities and
sensor boards without collecting prior knowledge. Finally, we suggest further calibration and adaptation of the
transferred models to be added to the pipeline.
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